
Training and Storing System1’s Time 
Series Models 

Gergely Daróczi, Nathan Janos 
 
Building and optimizing complex models is becoming relatively easy due to the growing set of 
tools available to data scientists.  We have free (not only as in “free beer” but as in “free 
speech”) access to open source software packages and tools like R, python, H20.ai, and 
TensorFlow.  These tools can be used together with hyperparameter optimization methods, 
cross validation, integration tests to perform scoring operations for recommendation systems. 
 
It then becomes fairly easy to use these tools in combination with a clean dataset and cheap 
computer power to build predictive models--even without understanding the mathematical or 
statistical foundation of the models, although this is also important for a number of 
reasons--using these tools as black boxes.  But, in reality it turns out that collecting, joining and 
transforming the raw data required to make clean data sets for modeling is not a trivial task. 
And, it’s not a small feat to deploy and monitor these models in production systems that make 
millions of decisions a day either.  This is sometimes the reality of the nature of work that data 
scientists have to perform outside of their core modeling and R&D efforts. 
 
This article describes how we train forecasting models on time series at System1, focusing on 
reproducibility, data standardization, model validation, logging, storing the actual models, and 
serving live recommendations. 

Standardizing the Modeling Workflow 
It seems that every data scientist has a go-to language or favorite method when it comes to 
specific modeling problems and goals, which can quickly lead to a very adaptable but extremely 
diverse environment that is unwieldy to integrate in production systems. 
 
Some data-driven teams are structured by having the data scientists do the research and solve 
business problems with free choice of programming languages and other tools, which then 
become productionized by the engineers in a standardized way.  Unfortunately, this approach 
isolates human resources and often creates slower and more disconnected product solutions 
and release cycles--not the best approach for most startup environments. 
 
Instead, at System1 we execute quick rounds of research and generalize the results early on 
into frameworks that can easily be applied to similar business problems or products within the 
company.  This saves a lot of time in the long run, not only because we can apply the exact 
same method on a new type of data with a single click of a button, but because this approach 



accumulates common knowledge available to all team members instead of compartmentalizing 
domain specific information and experiences. 
 
As an example look at the TBATS (Exponential Smoothing State Space Model With Box-Cox 
Transformation, ARMA Errors, Trend And Seasonal Components) model we use to model 
hourly revenue-per-click time series.  These time series are treated by removing the outliers 
based on some business-defined rules and filling in the data holes by applying a Kalman filter. 
The next day, we can easily apply the same framework for predicting the volume of ad clicks or 
other financial metrics without spending a lot of time on data preparations or quality checks on 
the time-series because we can leverage this prior work. 
 
And if it turns out that the existing workflow does not work well for a new type of data, then the 
team can work on generalizing it further and making it more robust to assist in future efforts. 

Standardizing the Model Output 
Standardizing the workflow does not limit us to using the very same model on all types of data; 
the workflow can also automatically decide the optimal model for the dataset or business goal. 
For example, intraday seasonality might be a very important factor for some financial metrics, 
while other models will better integrate holiday effects.  So technically speaking we might want 
to use the prophet instead of the forecast R package for predicting the number of ad-clicks 
around Thanksgiving. 
 
Of course, we could have also used a neural networks with a long short-term memory model, or 
TensorFlow instead of R for building the model, so it’s important to specify a standard model 
output format that is independent from the actual model or computing environment. 
 
Without diving too deeply in the technical details, we solved this problem by storing the models 
as JSON objects in Amazon S3 following a folder hierarchy describing the nature of the data 
and method.  In addition to this we store the models in multiple files with some redundancy to 
serve the needs of explorative dashboards, batch processing and live recommendations. These 
objects include the raw and language-specific models for future predictions, but there are plenty 
of other standardized fields stored as well.  For example, the raw and cleansed time-series data, 
the model parameters, the training log, and short-term future predictions. 

Advantages of a Standardized Modeling Workflow 
Being able to build a forecasting model on any time series in a standardized way has a number 
of great advantages over training ad-hoc models for specific needs: 

● Build new models (on new metrics) in a few hours 
● Automatically deploy the new models into production (for live or batch forecasting) 
● Never commit the same mistake (like low-volume data points obscuring seasonality) 
● Easily develop and then reuse models 



● Share dashboards and explorative tools with other stakeholders to investigate model 
parameters and forecasts 

● Storing all model versions in a standardized way also allows rolling back to previous 
versions and backtesting variants in a standardized way 

 


